برجاء الصبر والمتابعة للآخر .
محور الكلام بيدور حول مشروع مريب تتبناه العديد من الدول وانضمت إليهم مؤخراً إسرائيل !!!!!
نتابع ما يلي كمدخل للموضوع .
مسرِّع الجسيماتمحور الكلام بيدور حول مشروع مريب تتبناه العديد من الدول وانضمت إليهم مؤخراً إسرائيل !!!!!
نتابع ما يلي كمدخل للموضوع .
مسرِّع الجسيمات particle accelerator جهاز يستخدم لإنتاج حزم من الجسيمات المشحونة وتوجيهها لترتطم بأهداف متنوعة. وهي وسائل تمكِّن الباحثين من دراسة أشياء دقيقة جداً، مثل الذرة وبنيتها، ومعرفة القوى التي تمسك بأجزائها، كما أنها تزودهم بالطاقة اللازمة لتوليد جسيمات جديدة. وللمسرعات فوائد تتعدى البحوث البحتة إلى التطبيق، فهي تستخدم للأغراض الطبية والصناعية وبصورة خاصة لإنتاج النظائر المشعة radioisotopes. ويتركز معظمها في الولايات المتحدة الأمريكية ومقراتها الجامعات أو مخابر البحوث القومية، أما في أوربا فالمنشأة الأساسية فيها هي مخبر البحوث النووية الأوربي المعروف باسم CERN ومقره في جنيڤ بسويسرا، وأما الاتحاد السوڤييتي السابق فمقر مسرعاته في دوبنا Dubna وفي سيربوخوڤ Serpukhov.
تصميم مسرعات الجسيمات
المسرعات الخطّية
كانت المسرعات الخطية في بادئ الأمر تستخدم جهوداً كهربائية عالية لإكساب الجسيمات طاقة حركية عالية. وقد استخدم أحدها شحنة كهربائية ساكنة متجمِّعة طبقت حقلاً كهربائياً على طول أنبوب مفرغ من الهواء، فتكتسب الجسيمات طاقة نتيجة تحركها في الحقل الكهربائي. ففي مسرع كوكرفت - والتون Cockcroft - Walton مثلاً، يتولد الجهد العالي عن طريق مضاعفة الجهد الكهربائي مرات ومرات بفضل مجموعة مكثِّفات وديودات diodes، إضافة إلى المحولات الرافعة للجهد الأصلي (الشكل-1).
أما في مسرع ڤان دوغراف van de Graaff فيتم توفير الجهد العالي عن طريق سير belt دوّار يحمل باستمرار شحنات كهربائية من منبع في أسفله ليضعها على كرة مجوفة ضخمة في أعلاه مستفيداً من خاصة الرؤوس المؤنفة التي تؤين الهواء في الجوار المباشر لها فتدفع الشحنات المماثلة لشحنتها بعيداً عنها لينقلها السير الدوار إلى الكرة المجوفة (الشكل-2).
تستخدم مسرعات الكهرباء الساكنة هذه لدراسة البنى النووية عند الطاقات المنخفضة، كما تستخدم لحقن الجسيمات في مسرعات أخرى لإكساب الجسيمات طاقة أعلى، كما هي الحال في المسرعات الخطية التي يكون طولها كبيراً.
تعد المسرعات الخطية، التي لا تحدث فيها خسارة في الطاقة بالإشعاع أفضل المسرعات لتسريع الإلكترونات وأحسنها مردوداً. والجدير بالذكر أن أطولها هو مسرع جامعة ستانفورد الذي أنجز عام 1957 وطوله نحو 3 كم، وهو يسرع الإلكترونات حتى تبلغ طاقةً تساوي G2GeV أيX2 X109 إلكترون ڤولط. تختلف المسرعات الخطية هذه عن المسرعات المعتمدة على الكهرباء الساكنة باستخدامها حقولاً كهربائية متناوبة عند تواترات راديوية عالية لتسريع الجسيمات بدلاً من استخدام جهد عال وحيد. ويتألف أنبوب التسريع من قطاعات تشحن بشحنات موجبة وسالبة على التناوب. وعندما تمر حزمة جسيمات مشحونة كهربائياً عبر الأنبوب فإنها تتلقى دفعاً من القطاع الذي غادرته، وتتلقى جذباً من القطاع القادمة إليه، ومن ثم فإن التسريع الذي تكتسبه هو حصيلة دفعات وجذبات متتالية. يشار إلى أن المسرعات الخطية تستخدم اليوم لتسريع الأيونات الثقيلة مثل أيونات الكربون والنيون والآزوت.
المسرعات الدورانية
تقدم إرنست لورنس E.Lawrence عام 1932 باقتراح لتحل المسرعات الدورانية محل المسرعات الخطية التي تتطلب مسافات طويلة إذا كان المطلوب منها أن تولد جسيمات ذات طاقات عالية. ويتضمن اقتراحه جعل الجسيمات المسرَّعة ترسم مسارات دائرية أو قريبة من ذلك. ففي السيكلوترون cyclotron، الذي يعود إليه الفضل في ابتكاره، يُستخدم مغنطيس أسطواني لجعل الجسيمات التي شحنة الواحد منها q ترسم مساراً دائرياً يعتمد نصف قطره R على كتلة الجسيم المسرع m وعلى سرعته v وعلى شدة الحقل المغنطيسي B ويعطى بالعلاقة: R = mv/ qB
وهنا تُسرع الجسيمات ضمن صندوق معدني مجوف مؤلف من قطعتين تأخذ كل منهما شكل الحرف D، يطبق عليهما جهد كهربائي متناوب ذو تواتر عال بحيث يكتسب الجسيم في كل مرة يجتاز فيها الفجوة بين D الأولى وD الثانية دفعة إضافية تزيد من سرعته، وبحيث تنعكس قطبية الجهد الكهربائي المطبق على نصفي العلبة في اللحظة المناسبة لضمان تسريع الجسيم. تكمن سهولة تصميم السيكلوترون في أن الزمن اللازم للجسيم كي يرسم دورة كاملة في الحقل المغنطيسي يبقى نفسه على الرغم من ازدياد نصف قطر المسار الذي يرسمه بسبب ازدياد السرعة. وهذا ما يجعل تغير الحقل الكهربائي المتناوب منسجماً مع حركة الجسيمات المسرِّعة التي ترسم مساراً حلزونياً يبدأ من مركز السيكلوترون حتى محيطه (الشكل-5).
إلا أن النظرية النسبية لأينشتاين تقضي بأن زيادة سرعة الجسيم تؤدي إلى زيادة كتلته
ثمة طريقتان للتغلب على الحدود التي تضعها النظرية النسبية للطاقة العظمى التي يمكن لجسيم أن يكتسبها في السيكلوترون. ففي السنكروسيكلوترون synchrocyclotron يخفَّض تواتر منبع التيار المتناوب المستخدم للتسريع تدريجياً بازدياد السرعة لكي ينسجم ذلك مع تناقص السرعة الزاوّية للبروتونات. أما في المسرِّع المسمى isochronous cyclotron فيضمن تصميم المغنطيس فيه توفير حقل أشد قرب محيط السيكلوترون وحقل أضعف قرب المركز، وهذا ما يسمح بالتعويض عن زيادة الكتلة بازدياد السرعة ومن ثم بقاء تواتر المنبع المتناوب من دون تغيير. وقد شُيد أول مسرع سنكروسيكلوترون وفق هذا الأسلوب في بيركلي بجامعة كاليفورنيا عام 1946م، وكانت طاقة الجسيمات المسرَّعة فيه كافية لتوليد البيونات pions. وقد تطلبت البحوث في الفيزياء النووية توفير مسرِّعات تُكسب الجسيمات طاقة من رتبة GeV أي 910 إلكترون فولط، وهكذا بدأ عصر السنكروترون synchrotron. يستخدم في هذا النوع من المسرعات حلقة من المغانط تحيط بأنبوب على شكل دولاب مفرغ من الهواء (الشكل6-).
تزداد شدة الحقل المغنطيسي هنا بازدياد سرعة البروتونات، بحيث تبقى تتحرك في دائرة نصف قطرها ثابت تقريباً بدلاً من أن يزداد نصف القطر كما كان يتم في السيكلوترون. وهكذا يحذف الجزء المركزي من الحقل المغنطيسي تماماً، الأمر الذي سمح ببناء حلقات تسريع تقاس أقطارها بالكيلومترات. يجري حقن الجسيمات في مسرع السنكروترون بعد اكتسابها سرعة عالية في مسرع آخر خطي. وقد كان أول مسرع للبروتونات من هذا النوع هو مسرع الكوزموترون في بروكهاڤن Brookhaven فقد شيد عام 1952م وبلغت طاقة البروتونات المسرَّعة فيه 3غيغا إلكترون فولط.
أما السنكروترون الذي شيد في باتاڤيا Batavia بولاية إلينوي في الولايات المتحدة فقد بلغت طاقة البروتونات الصادرة عنه 500 غيغا إلكترون فولط، وقد انتهى العمل فيه مطلع عام 1970م ويبلغ قطر حلقته ستة كيلومترات. وقد جرى تطوير هذا المسرع عام 1983م، بحيث غدا يسرِّع البروتونات والبروتونات المضادة حتى سرعات عالية جداً؛ بحيث تكون الطاقة المكافئة لتصادم هذين النوعين من الجسيمات 2 تريليون إلكترون فولط أي 2 × 1210 إلكترون فولط، ولذا فقد أُطلق على هذا المسرع اسم التيفاترون. وهو ضمن سلالة من المسرعات تُعرف باسم مسرعات الحزم المتصادمة colliding-beams machine، وهي بمنزلة مسرعين اثنين أحدهما يعلو الآخر، يجري تصادم بين حزمتيهما المسرعتين إما وجهاً لوجه أو بزاوية بين الحزمتين. إن استخدام مسرع وحيد وهدف ثابت بالطاقة نفسها يتطلب مسرعاً تفوق طاقة تسريعه ضعف الطاقة التي تحملها إحدى الحزمتين المتصادمتين.
ويمكن استخدام السنكروترون لتسريع الإلكترونات، إلا أن مردود المسرع عندها لا يكون عالياً، وذلك لأن الإلكترونات المسرَّعة تشع طاقة بصورة إشعاع سنكروتروني synchrotron radiation. يسمى مسرِّع الإلكترونات باسم البيتاترون betatron. وفيه تحقن الإلكترونات في حيز أنبوبي مفرغ من الهواء على شكل دولاب موضوع ضمن حقل مغنطيسي، وتزاد شدة الحقل المغنطيسي تدريجياً الأمر الذي يولد حقلاً كهربائياً مماسياً يسرع الإلكترونات بآلية التحريض induction.
المصدر :
http://www.arab-ency.com/index.php?modu ... rm&id=6533
نتابع أحبتي في الله .
مصادم الهدرونات الكبير (بالإنجليزية: Large Hadron Collider) (اختصاراً LHC) :
هو أضخم مُعجِّل جسيمات وأعلاها طاقة وسرعة، يستخدم هذا السينكروترون لمصادمة جسيمات دون ذرية وهي البروتونات بطاقة تصل إلى 7 تيراإلكترون فولت (1.12 ميكروجول). يعجّل فيض من البروتونات في دائرة المعجل إلى سرعة قريبة من سرعة الضوء تصل طاقة حركتها 3.5 تيرا (1 تيرا =1012) إلكترون فولت TeV، وفي نفس الوقت يقوم المعجل بتسريع فيض آخر من البروتونات في الاتجاه العكسي (في أنبوب دائري آخر موازي للأول) إلى سرعة قريبة من سرعة الضوء أيضا بحيث تصل طاقة حركته 3.5 تيرا إلكترون فولط. تحافظ على بقاء البروتونات المعجلة في أنبوب كل فيض منها الدائري البالغ طوله 27 كيلومتر مغناطيسات قوية جدا تستهلك طاقة كهربائية عالية تستلزم التبريد بالهيليوم السائل ذو درجة حرارة نحو 4 كلفن أي نحو 270 درجة تحت الصفر المئوي.[1][2].
بعد تسريع فيضي البروتونات إلى سرعة 3.5 تيرا إلكترون فولط في اتجاهين متضادين، يسلط فيضي البروتونات عند نقاط معينة للالتقاء والتصادم ببعضهما البعض، وتصبح طاقة التصادم بين كل بروتونين 7 تيرا إلكترون فولط. خصصت 4 نقاط لتصادم البروتونات على دائرة المعجل الكبرى البالغ محيطها 27 كيلومتر. وأنشئت عند تلك النقاط مكشافات (عدادات) لتسجيل نواتج التصادمات، ومن المتوقع أن تحتوي نواتج الاصطدام على جميع الجسيمات دون الذرية المعروفة لنا منها إلكترونات ومضاد الإلكترون وبروتونات ونقائض البروتونات وكواركات وغيرها، ويأمل العلماء اكتشاف جسيمات أولية جديدة لا نعرفها.
مصطلح هادرون يشير إلى الجسيمات التي تحتوي على الكواركات ومن تلك الجسيمات البروتون والنيوترون. بينما يمتلك البروتون شحنة كهربائية موجبة لا يمتلك النيوترون شحنة كهربائية. لهذا السبب يمكن تعجيل البروتونات في المعجل أو المصادم بواسطة تسليط مجال كهربائي عليها ومتواصلا عبر دائرة المعجل، ولا يمكن تعجيل النيوترونات. هذا يعني أن مصادم الهدرونات الكبير ما هو إلا معجل للبروتونات، ويسمى الكبير حيث أن دائرته يصل قطرها 27 كيلومتر على الحدود بين سويسرا وفرنسا بالقرب من مدينة جينيف وهو مبني 100 متر تحت الأرض بحيث لا تصل إليه أشعة كونية تشوش على قياساته
الغرض منه
أحدها سيتناول معظم الأسئلة الأساسية في الفيزياء، وهي مسائل متعلقة ببناء الكون وفهمها عن طريق فهم الجسيمات المكونة للكون، أنواعها وطرق التآثر بينها وأي فهم أعمق لقوانين الطبيعة ونشأة الكون، حاله، ومصيره.
ويوجد هذا المصادم في أنبوب محيط دائرة طوله 27 كيلومتر (17 ميل) على عمق 175 متر (570 قدم) تحت الحدود الفرنسية السويسرية بالقرب من مدينة جنيف.
تبنت المنظمة الأوروبية للبحث النووي (CERN) بناء مجمع مصادم الهادرونات الكبير، وذلك لشدة الشغف على ما يمكن تحصيله من اكتشافات عن الجسيمات الأولية، من خلال البحث العلمي للجسيمات عند السرعات العالية، وبصفة خاصة التحقق من وجود بوزون هيغز الافتراضي [3] والعائلة الكبيرة من الجسيمات الجديدة التي تنبأ بها التناظر الفائق.[4].
يقوم بتمويل مصادم الهدرونات الكبير المنظمة الأوروبية للأبحاث النووية، وتعاون على بنائه أكثر من 10000 فيزيائي ومهندس من 100 دولة ومئات من الجامعات والمختبرات[5].
وتتعلق الاكتشفات التي سوف يحققها مصادم الهدرونات الكبير بالإجابة على مسائل أساسية في مجال الطبيعة، يخص الفيزيائيين منها قوانين التآثر بين القوى المختلفة المؤثرة على الجسيمات الأولية، وكيفية بناء الكون من تلك الجسيمات والزمان والمكان، والتأثير الكمومي لميكانيكا الكم والنظرية النسبية، حيث أن ما توصلنا إليه حتى الآن من نظريات لا يزال غامضا في مجمله. ذلك لأن كل من تلك النظريات يستطيع تفسير ركن من أجزاء الطبيعة ولا يستطيع تفسير أركان أخرى أوسع. من ضمن المسائل المرجو أن تجيب عليها نتائج مصادم الهدرونات الكبير المسائل الآتية: [6]
هل يوجد بوزون هيغز حقا الذي تفترضه نظرية هيغز؟
كيفية إعطاء جسيمات هيغز (أو حقل هيغز) جسيمات مثل الإلكترون، البروتون والنيوترون كتلتها وعلاقة القوة الضعيفة وانكسار التناظر خلال التفاعلات بين الجسيمات.
[7][8][9]
مسألة التناظر العظيم وهي خاصة بالنموذج الأساسي لتركيب الجسيمات الأولية وكذلك مسألة تناظر بوانكاريه، وظاهرة وجود نقيض لكل جسيم نجده في الطبيعة، مثل نقيض الإلكترون ونقيض البروتون وهكذا.
[10][11][12]
ما هو تفسير أن الإلكترون أخف من البروتون 1840 مرة ؟ ولماذا يكون نقيض البروتون أثقل 1840 مرة من نقيض الإلكترون؟ وتفسير كتل الكواركات وجميع الجسيمات الآخرى ، لماذا تلك الكتل بالذات؟
هل توجد أبعاد للكون أكثر من الثلاثة أبعاد المكونة من س ،ص ،ع (أو فوق-تحت، أمام-خلف، يمين-يسار)، بالإضافة إلى بعد الزمن؟ كما تفترضه نظرية الأوتار.
[13] ?[14]
ما هي طبيعة المادة المظلمة التي نشاهد تأثيرها في تشكيل الكون وتمثل 23% من مادة الكون؟
وتساؤلات أخرى تتعلق بـ :
هل التآثر الكهرومغناطيسي و القوة الشديدة المتحكمة في بناء نواة الذرة والقوة الضعيفة ، هل هي صور مختلفة لقوة جامعة وحيدة ، كما تفترضه نظرية التوحيد الكبرى؟
ما سبب أن قوة الجاذبية أضعف ببلايين بلايين المرات من القوى الأساسية في الكون؟
هل توجد كواركات أخرى غير معروفة؟
ما هو سبب انكسار التناظر بين المادة ونقيض المادة (CP violation)؟
ما هي طبيعة بلازما الكوارك-غلوون عند نشأة الكون؟
وسوف يختبر ذلك بواسطة مصادم الأيونات ALICE التابع لمصادم الهدرونات الكبير.
مصادم الهدرونات الكبير (بالإنجليزية: Large Hadron Collider) (اختصاراً LHC) :
هو أضخم مُعجِّل جسيمات وأعلاها طاقة وسرعة، يستخدم هذا السينكروترون لمصادمة جسيمات دون ذرية وهي البروتونات بطاقة تصل إلى 7 تيراإلكترون فولت (1.12 ميكروجول). يعجّل فيض من البروتونات في دائرة المعجل إلى سرعة قريبة من سرعة الضوء تصل طاقة حركتها 3.5 تيرا (1 تيرا =1012) إلكترون فولت TeV، وفي نفس الوقت يقوم المعجل بتسريع فيض آخر من البروتونات في الاتجاه العكسي (في أنبوب دائري آخر موازي للأول) إلى سرعة قريبة من سرعة الضوء أيضا بحيث تصل طاقة حركته 3.5 تيرا إلكترون فولط. تحافظ على بقاء البروتونات المعجلة في أنبوب كل فيض منها الدائري البالغ طوله 27 كيلومتر مغناطيسات قوية جدا تستهلك طاقة كهربائية عالية تستلزم التبريد بالهيليوم السائل ذو درجة حرارة نحو 4 كلفن أي نحو 270 درجة تحت الصفر المئوي.[1][2].
بعد تسريع فيضي البروتونات إلى سرعة 3.5 تيرا إلكترون فولط في اتجاهين متضادين، يسلط فيضي البروتونات عند نقاط معينة للالتقاء والتصادم ببعضهما البعض، وتصبح طاقة التصادم بين كل بروتونين 7 تيرا إلكترون فولط. خصصت 4 نقاط لتصادم البروتونات على دائرة المعجل الكبرى البالغ محيطها 27 كيلومتر. وأنشئت عند تلك النقاط مكشافات (عدادات) لتسجيل نواتج التصادمات، ومن المتوقع أن تحتوي نواتج الاصطدام على جميع الجسيمات دون الذرية المعروفة لنا منها إلكترونات ومضاد الإلكترون وبروتونات ونقائض البروتونات وكواركات وغيرها، ويأمل العلماء اكتشاف جسيمات أولية جديدة لا نعرفها.
مصطلح هادرون يشير إلى الجسيمات التي تحتوي على الكواركات ومن تلك الجسيمات البروتون والنيوترون. بينما يمتلك البروتون شحنة كهربائية موجبة لا يمتلك النيوترون شحنة كهربائية. لهذا السبب يمكن تعجيل البروتونات في المعجل أو المصادم بواسطة تسليط مجال كهربائي عليها ومتواصلا عبر دائرة المعجل، ولا يمكن تعجيل النيوترونات. هذا يعني أن مصادم الهدرونات الكبير ما هو إلا معجل للبروتونات، ويسمى الكبير حيث أن دائرته يصل قطرها 27 كيلومتر على الحدود بين سويسرا وفرنسا بالقرب من مدينة جينيف وهو مبني 100 متر تحت الأرض بحيث لا تصل إليه أشعة كونية تشوش على قياساته
الغرض منه
أحدها سيتناول معظم الأسئلة الأساسية في الفيزياء، وهي مسائل متعلقة ببناء الكون وفهمها عن طريق فهم الجسيمات المكونة للكون، أنواعها وطرق التآثر بينها وأي فهم أعمق لقوانين الطبيعة ونشأة الكون، حاله، ومصيره.
ويوجد هذا المصادم في أنبوب محيط دائرة طوله 27 كيلومتر (17 ميل) على عمق 175 متر (570 قدم) تحت الحدود الفرنسية السويسرية بالقرب من مدينة جنيف.
تبنت المنظمة الأوروبية للبحث النووي (CERN) بناء مجمع مصادم الهادرونات الكبير، وذلك لشدة الشغف على ما يمكن تحصيله من اكتشافات عن الجسيمات الأولية، من خلال البحث العلمي للجسيمات عند السرعات العالية، وبصفة خاصة التحقق من وجود بوزون هيغز الافتراضي [3] والعائلة الكبيرة من الجسيمات الجديدة التي تنبأ بها التناظر الفائق.[4].
يقوم بتمويل مصادم الهدرونات الكبير المنظمة الأوروبية للأبحاث النووية، وتعاون على بنائه أكثر من 10000 فيزيائي ومهندس من 100 دولة ومئات من الجامعات والمختبرات[5].
وتتعلق الاكتشفات التي سوف يحققها مصادم الهدرونات الكبير بالإجابة على مسائل أساسية في مجال الطبيعة، يخص الفيزيائيين منها قوانين التآثر بين القوى المختلفة المؤثرة على الجسيمات الأولية، وكيفية بناء الكون من تلك الجسيمات والزمان والمكان، والتأثير الكمومي لميكانيكا الكم والنظرية النسبية، حيث أن ما توصلنا إليه حتى الآن من نظريات لا يزال غامضا في مجمله. ذلك لأن كل من تلك النظريات يستطيع تفسير ركن من أجزاء الطبيعة ولا يستطيع تفسير أركان أخرى أوسع. من ضمن المسائل المرجو أن تجيب عليها نتائج مصادم الهدرونات الكبير المسائل الآتية: [6]
هل يوجد بوزون هيغز حقا الذي تفترضه نظرية هيغز؟
كيفية إعطاء جسيمات هيغز (أو حقل هيغز) جسيمات مثل الإلكترون، البروتون والنيوترون كتلتها وعلاقة القوة الضعيفة وانكسار التناظر خلال التفاعلات بين الجسيمات.
[7][8][9]
مسألة التناظر العظيم وهي خاصة بالنموذج الأساسي لتركيب الجسيمات الأولية وكذلك مسألة تناظر بوانكاريه، وظاهرة وجود نقيض لكل جسيم نجده في الطبيعة، مثل نقيض الإلكترون ونقيض البروتون وهكذا.
[10][11][12]
ما هو تفسير أن الإلكترون أخف من البروتون 1840 مرة ؟ ولماذا يكون نقيض البروتون أثقل 1840 مرة من نقيض الإلكترون؟ وتفسير كتل الكواركات وجميع الجسيمات الآخرى ، لماذا تلك الكتل بالذات؟
هل توجد أبعاد للكون أكثر من الثلاثة أبعاد المكونة من س ،ص ،ع (أو فوق-تحت، أمام-خلف، يمين-يسار)، بالإضافة إلى بعد الزمن؟ كما تفترضه نظرية الأوتار.
[13] ?[14]
ما هي طبيعة المادة المظلمة التي نشاهد تأثيرها في تشكيل الكون وتمثل 23% من مادة الكون؟
وتساؤلات أخرى تتعلق بـ :
هل التآثر الكهرومغناطيسي و القوة الشديدة المتحكمة في بناء نواة الذرة والقوة الضعيفة ، هل هي صور مختلفة لقوة جامعة وحيدة ، كما تفترضه نظرية التوحيد الكبرى؟
ما سبب أن قوة الجاذبية أضعف ببلايين بلايين المرات من القوى الأساسية في الكون؟
هل توجد كواركات أخرى غير معروفة؟
ما هو سبب انكسار التناظر بين المادة ونقيض المادة (CP violation)؟
ما هي طبيعة بلازما الكوارك-غلوون عند نشأة الكون؟
وسوف يختبر ذلك بواسطة مصادم الأيونات ALICE التابع لمصادم الهدرونات الكبير.
طريقة التشغيل
يحتوي نفق مصادم الهدرونات على أنبوبين دائريين متوازيين يبلغ قطر مقطع الأنبوب 2.5 سنتيمتر، ومحيط دائرة الانبوب 27 كيلومتر. يُعجل في الأنبوبين فيضين من البروتونات في اتجاهين متعاكسين. ويتقاطع الأنبوبان عند أربعة نقاط موزعة على دائرتي المعجل بحيث تحدث تصادمات بين البروتونات.
وترسل البروتونات في الأنبوبين في هيئة حزم يبلغ قطر مقطعها 16 ميكرومتر وطول الحزمة 8 سنتيمتر. تحتوي كل حزمة على نحو 115 مليار من البروتونات. وعند التشغيل بالكامل تحتوي دائرتي المصادم على نحو 2800 من حزم البروتونات تدور فيه بمعدل تردد مقداره 11 كيلوهرتز. وعند تقاطع حزم البروتونات يحدث تصادم بينها، أي بمعدل 25 نانو ثانية.
التجارب
تركيب المكشاف CMS ويزن نحو 12.000 طن أثناء تركيبه تحت الأرض (عام 2007).
يحدث التقاء واصطدام فيضي البروتونات المتعاكسان عند نقاط معينة على مسار المعجل وتنصب عند تلك النقاط أجهزة القياس الضخمة التي تمكّن من تسجيل جميع الجسيمات الناشئة عن اصطدام بروتونين. وتوجد أجهزة القياس المعدة في غرف تحت الأرض ومنها المكشاف أطلس ATLAS ومكشاف الميونات CMS و LHCb وتجربة أليس ALICE و TOTEM (أنظر الشكل). ويبلغ وزن مكشاف أطلس نحو 7000 طن والمكشاف CMS نحو 12000طن، وقد أُعدّ هذان المكشافان (عدادات جسيمات) خصيصا من أجل التأكد من قياس كل منهما على حدة، فإذا سجل أحدهما جسيما غريبا ذا مواصفات معينة، يمكن التحقق من صحة ذلك عن طريق المقياس الآخر.
أي أن التجربتين تعملين على اكتشاف جسيمات أولية جديدة لا نعرفها تدخل في تكوين الكون، أو أن يكون لها دور في نشأة الكون وتكوينه في الماضي. الفكرة وراء الموضوع هو أن اصطدام بروتونين تبلغ كتلة الواحد منهما 0.94 جيجا إلكترون فولت على مربع سرعة الضوء وعند سرعات تعادل 7 تيرا إلكترون فولت ينتج عنه أعدادا كبيرة من مختلف الجسيمات الأولية منها الكبير ومنها الصغير وذلك عن طريق تحول الطاقة عند الاصطدام إلى مادة (جسيمات أولية) طبقا لمعادلة تكافؤ المادة والطاقة لأينشتاين، فطاقة 7 تيرا إلكترون فولت - وهي طاقة اصتدام بروتونين - تكفي لأن يتولد منها نحو 7000 من البروتونات، حيث كتلة البروتون 0.94 جيجا إلكترون فولت فقط.
علّمتنا النظرية النسبية الخاصة لأينشتاين والتي صاغها عام 1905 أن الكتلة مكافئة للطاقة، ولا يدخل في العلاقة بينهما سوى مربع سرعة الضوء في الفراغ c2. أي أن:
E = m c2
حيث:
E = الطاقة بالجول،
m = الكتلة كيلوجرام،
c = سرعة الضوء في الفراغ = 3. 8 10 متر/ثانية تقريباً.
وحيث أن كتلة البروتون تبلغ 0.938 غيغا إلكترون فولت على مربع سرعة الضوء فإن طاقة البروتونين المتصادمين بطاقة 7 تيرا إلكترون فولت تكفي لإنتاج أكثر من 7000 بروتون عند تحول طاقتهم (البالغة 7 مليون مليون إلكترون فولت) إلى مادة.[بحاجة لمصدر] لكن طاقة البروتونات المعجلة لن تتحول إلى بروتونات فقط، وإنما ينشأ عنها بالإضافة جسيمات أولية كثيرة ومختلفة، منها الكواركات والميزونات وغيرها. كما تسمح طاقة التصادم العالية بإنتاج جسيمات أولية قد تكون 200 مرة أثقل من البروتون. ويأمل العلماء في اكتشاف أنواعا جديدة من الجسيمات لا نعرفها.[بحاجة لمصدر]
في 10 سبتمبر 2008 أتمّ فيضا البروتونات تسارعهما في المعجل بنجاح وبقيت في المدار الرئيسي للمصادم LHC للمرة الأولى من دون أن تصطدم بجدار الأنبوبين.[16]، ولكن بعد 9 أيام, توقفت العمليات نتيجة لخطأ خطير في التوصيلات الكهربائية لأحد المغناطيسات فائقة التوصيل الذي يبرد بالهيليوم السائل عند درجة 4 كلفن.[17]. وقد استغرق إصلاح الأضرار الناجمة وتثبيت ميزات إضافية للسلامة أكثر من سنة[18][19].
وبتاريخ 20 نوفمبر 2009، أتم فيضا البروتونات دورتهما للمرة الثانية بنجاح[20]، مع حدوث أول تصادم بروتون-بروتون تم تسجيله بعد ثلاثة أيام من حقن طاقة 450 GeV لكل شعاع[21]. مما جعل مصادم الهدرونات الكبير أعلى مصادم جسيمات طاقةً في العالم وذلك في يوم 30 نوفمبر 2009، حائزا على الرقم العالمي الجديد وهو 1.18 TeV لكل شعاع ومتجاوزا الرقم العالمي السابق الذي ناله تيفاترون في فيرميلاب في باتافيا بولاية إلينوي[22].
بالنسبة إلى الاختبارات بواسطة أيونات الرصاص الثقيلة، فيمكن بواسطتها الوصول إلى طاقة إجمالية للاصطدام قدرها 1146 تيرا إلكترون فولت. ومن المخطط أن يقوم مكشاف أليس ALICE-Detector بتسجيل نواتج اصتدام فيضي أيونات الرصاص وهذا المكشاف قد بني خصيصا لهذا الغرض. ولكن يمكن أيضا للمكشاف أطلس وكذلك مكشاف CMS القيام بدراسة تصادم الأيونات الثقيلة عند تلك الطاقات العالية جدا
مكشاف أطلس
مكشاف أطلس هو عداد ضخم جدا يبلغ طوله 45 متر ويزن 7000 طن ويبلغ قطره 22 متر. ويتألف من 4 أنظمة لعدادات الجسيمات تغلف كل طبقة منها الطبقة التي تحتها. كما هو الحال عند إجراء تجارب تصادمات الجسيمات الأولية السريعة تحيط الأنواع المختلفة من عدادات الجسيمات بنقطة الاصطدام وتغلفها هنا في أربعة طبقات متتالية، بحيث تسجل كل طبقة نوعا آخر من الجسيمات وسرعاتها، كما تسجل خصائص أخرى للجسيمات مثل شحنتها الكهربائية وكتلتها، كما تتيح معرفة طاقتها عن طريق قياس مسار كل جسيم وانحرافه بالمجال المغناطيسي.
لولب مركب للميون
هو مكشاف لجسيم الميون وجسيمات أخرى تنشأ عند اصتدام البروتونات بعضها البعض ، ويرجى من هذا العداد اكتشاف جسيم بوزون هيغز الجاري البحث عنه. وصمم اللولب المركب كعداد يستطيع تسجيل وقياس عدة خصائص تتعلق باصتدام البروتونات عند طاقة عالية جدا تبلغ 14 تيرا إلكترون فولت وهي سرعات تخضع للنظرية النسية يقوم المصادم بتسريعها إلى هذا الحد. بينما تبلغ كتلة البروتون 1 جيجا إلكترون فولط يأمل العلماء من اكتشاف بوزونات تبلغ كتلتها بين 100 و 200 جيجا إلكترون فولت. أي أثقل من الروتونات نفسها بنحو 100 إلى 200 مرة ، إذ تتحول طاقة الحركة للبروتونات (المعجلة تعجيلا سريع جدا جدا ) إلى مادة وقد تظهر في هيئة تلك البوزونات التي تفترض وجودها نظرية هيغنز .
الميونات هي جسيمات أولية صغيرة الكتلة بين الإلكترون والبروتون ، لذلك تظهر كثيرا في المعجلات الكبيرة والصغيرة ، وهي من أوائل الجسيمات التي سوف يُستدل عليها عن حسن عمل المكشاف.
يحتوي نفق مصادم الهدرونات على أنبوبين دائريين متوازيين يبلغ قطر مقطع الأنبوب 2.5 سنتيمتر، ومحيط دائرة الانبوب 27 كيلومتر. يُعجل في الأنبوبين فيضين من البروتونات في اتجاهين متعاكسين. ويتقاطع الأنبوبان عند أربعة نقاط موزعة على دائرتي المعجل بحيث تحدث تصادمات بين البروتونات.
وترسل البروتونات في الأنبوبين في هيئة حزم يبلغ قطر مقطعها 16 ميكرومتر وطول الحزمة 8 سنتيمتر. تحتوي كل حزمة على نحو 115 مليار من البروتونات. وعند التشغيل بالكامل تحتوي دائرتي المصادم على نحو 2800 من حزم البروتونات تدور فيه بمعدل تردد مقداره 11 كيلوهرتز. وعند تقاطع حزم البروتونات يحدث تصادم بينها، أي بمعدل 25 نانو ثانية.
التجارب
تركيب المكشاف CMS ويزن نحو 12.000 طن أثناء تركيبه تحت الأرض (عام 2007).
يحدث التقاء واصطدام فيضي البروتونات المتعاكسان عند نقاط معينة على مسار المعجل وتنصب عند تلك النقاط أجهزة القياس الضخمة التي تمكّن من تسجيل جميع الجسيمات الناشئة عن اصطدام بروتونين. وتوجد أجهزة القياس المعدة في غرف تحت الأرض ومنها المكشاف أطلس ATLAS ومكشاف الميونات CMS و LHCb وتجربة أليس ALICE و TOTEM (أنظر الشكل). ويبلغ وزن مكشاف أطلس نحو 7000 طن والمكشاف CMS نحو 12000طن، وقد أُعدّ هذان المكشافان (عدادات جسيمات) خصيصا من أجل التأكد من قياس كل منهما على حدة، فإذا سجل أحدهما جسيما غريبا ذا مواصفات معينة، يمكن التحقق من صحة ذلك عن طريق المقياس الآخر.
أي أن التجربتين تعملين على اكتشاف جسيمات أولية جديدة لا نعرفها تدخل في تكوين الكون، أو أن يكون لها دور في نشأة الكون وتكوينه في الماضي. الفكرة وراء الموضوع هو أن اصطدام بروتونين تبلغ كتلة الواحد منهما 0.94 جيجا إلكترون فولت على مربع سرعة الضوء وعند سرعات تعادل 7 تيرا إلكترون فولت ينتج عنه أعدادا كبيرة من مختلف الجسيمات الأولية منها الكبير ومنها الصغير وذلك عن طريق تحول الطاقة عند الاصطدام إلى مادة (جسيمات أولية) طبقا لمعادلة تكافؤ المادة والطاقة لأينشتاين، فطاقة 7 تيرا إلكترون فولت - وهي طاقة اصتدام بروتونين - تكفي لأن يتولد منها نحو 7000 من البروتونات، حيث كتلة البروتون 0.94 جيجا إلكترون فولت فقط.
علّمتنا النظرية النسبية الخاصة لأينشتاين والتي صاغها عام 1905 أن الكتلة مكافئة للطاقة، ولا يدخل في العلاقة بينهما سوى مربع سرعة الضوء في الفراغ c2. أي أن:
E = m c2
حيث:
E = الطاقة بالجول،
m = الكتلة كيلوجرام،
c = سرعة الضوء في الفراغ = 3. 8 10 متر/ثانية تقريباً.
وحيث أن كتلة البروتون تبلغ 0.938 غيغا إلكترون فولت على مربع سرعة الضوء فإن طاقة البروتونين المتصادمين بطاقة 7 تيرا إلكترون فولت تكفي لإنتاج أكثر من 7000 بروتون عند تحول طاقتهم (البالغة 7 مليون مليون إلكترون فولت) إلى مادة.[بحاجة لمصدر] لكن طاقة البروتونات المعجلة لن تتحول إلى بروتونات فقط، وإنما ينشأ عنها بالإضافة جسيمات أولية كثيرة ومختلفة، منها الكواركات والميزونات وغيرها. كما تسمح طاقة التصادم العالية بإنتاج جسيمات أولية قد تكون 200 مرة أثقل من البروتون. ويأمل العلماء في اكتشاف أنواعا جديدة من الجسيمات لا نعرفها.[بحاجة لمصدر]
في 10 سبتمبر 2008 أتمّ فيضا البروتونات تسارعهما في المعجل بنجاح وبقيت في المدار الرئيسي للمصادم LHC للمرة الأولى من دون أن تصطدم بجدار الأنبوبين.[16]، ولكن بعد 9 أيام, توقفت العمليات نتيجة لخطأ خطير في التوصيلات الكهربائية لأحد المغناطيسات فائقة التوصيل الذي يبرد بالهيليوم السائل عند درجة 4 كلفن.[17]. وقد استغرق إصلاح الأضرار الناجمة وتثبيت ميزات إضافية للسلامة أكثر من سنة[18][19].
وبتاريخ 20 نوفمبر 2009، أتم فيضا البروتونات دورتهما للمرة الثانية بنجاح[20]، مع حدوث أول تصادم بروتون-بروتون تم تسجيله بعد ثلاثة أيام من حقن طاقة 450 GeV لكل شعاع[21]. مما جعل مصادم الهدرونات الكبير أعلى مصادم جسيمات طاقةً في العالم وذلك في يوم 30 نوفمبر 2009، حائزا على الرقم العالمي الجديد وهو 1.18 TeV لكل شعاع ومتجاوزا الرقم العالمي السابق الذي ناله تيفاترون في فيرميلاب في باتافيا بولاية إلينوي[22].
بالنسبة إلى الاختبارات بواسطة أيونات الرصاص الثقيلة، فيمكن بواسطتها الوصول إلى طاقة إجمالية للاصطدام قدرها 1146 تيرا إلكترون فولت. ومن المخطط أن يقوم مكشاف أليس ALICE-Detector بتسجيل نواتج اصتدام فيضي أيونات الرصاص وهذا المكشاف قد بني خصيصا لهذا الغرض. ولكن يمكن أيضا للمكشاف أطلس وكذلك مكشاف CMS القيام بدراسة تصادم الأيونات الثقيلة عند تلك الطاقات العالية جدا
مكشاف أطلس
مكشاف أطلس هو عداد ضخم جدا يبلغ طوله 45 متر ويزن 7000 طن ويبلغ قطره 22 متر. ويتألف من 4 أنظمة لعدادات الجسيمات تغلف كل طبقة منها الطبقة التي تحتها. كما هو الحال عند إجراء تجارب تصادمات الجسيمات الأولية السريعة تحيط الأنواع المختلفة من عدادات الجسيمات بنقطة الاصطدام وتغلفها هنا في أربعة طبقات متتالية، بحيث تسجل كل طبقة نوعا آخر من الجسيمات وسرعاتها، كما تسجل خصائص أخرى للجسيمات مثل شحنتها الكهربائية وكتلتها، كما تتيح معرفة طاقتها عن طريق قياس مسار كل جسيم وانحرافه بالمجال المغناطيسي.
لولب مركب للميون
هو مكشاف لجسيم الميون وجسيمات أخرى تنشأ عند اصتدام البروتونات بعضها البعض ، ويرجى من هذا العداد اكتشاف جسيم بوزون هيغز الجاري البحث عنه. وصمم اللولب المركب كعداد يستطيع تسجيل وقياس عدة خصائص تتعلق باصتدام البروتونات عند طاقة عالية جدا تبلغ 14 تيرا إلكترون فولت وهي سرعات تخضع للنظرية النسية يقوم المصادم بتسريعها إلى هذا الحد. بينما تبلغ كتلة البروتون 1 جيجا إلكترون فولط يأمل العلماء من اكتشاف بوزونات تبلغ كتلتها بين 100 و 200 جيجا إلكترون فولت. أي أثقل من الروتونات نفسها بنحو 100 إلى 200 مرة ، إذ تتحول طاقة الحركة للبروتونات (المعجلة تعجيلا سريع جدا جدا ) إلى مادة وقد تظهر في هيئة تلك البوزونات التي تفترض وجودها نظرية هيغنز .
الميونات هي جسيمات أولية صغيرة الكتلة بين الإلكترون والبروتون ، لذلك تظهر كثيرا في المعجلات الكبيرة والصغيرة ، وهي من أوائل الجسيمات التي سوف يُستدل عليها عن حسن عمل المكشاف.
معلومات عامة
يشار إلى هذا المعجل بالأحرف الأولى من اسمه بالإنجليزية LHC وحاليا هو أكبر مُعجِّل جسيمات في العالم يستخدم في مصادمة أشعة بروتونية طاقتها 7 تيرا (7×1210) إلكترون فولت. في جوهره هو أداة علمية تجريبية الهدف منها اختبار صحة فرضيات وحدود النموذج الفيزيائي القياسي الذي يصف الإطار النظري الحالي لفيزياء الجسيمات.
يعد مصادم الهدرونات الكبير أكبر معجلات الجسيمات في العالم حاليا وأعلاها طاقةً[23]، وقد بدأت فكرته في أوائل الثمانينيات وتلقى الموافقة الأولى من مجلس CERN في ديسمبر 1994 وبدأت أعمال الإنشاءات المدنية في أبريل 1998.
بعد تمام التركيبات في المصادم وتبريده إلى درجة حرارته التشغيلية النهائية وهي تقريبا 1.9 ك (-271.25 مئوية)، وبعد أن أجري حقن مبدئي لحزم جسيمات فيما بين 8 و 11 أغسطس 2008[24][25]، جرت المحاولة الأولى لتدوير شعاع في المصادم بأكمله يوم 10 سبتمبر 2008[26] في الساعة 7:30 بتوقيت جرينتش. والمصادمة الأولى عالية الطاقة وكان من المخطط أن تحدث بعد افتتاح المصادم رسميا في 21 أكتوبر 2008 [27] إلا أنه أقر تأجيلها لنهاية نوفمبر من نفس العام لأسباب تقنية ومع ذلك تأخرت العملية أكثر حتى نوفمبر 2009.
عند تشغيله وبدء التجارب العملية من المنتظر أن ينتج المصادم الجسيم الغير معروف بوزون هيغز والذي ستؤدي مشاهداته إلى تأكيد تنبؤات النموذج القياسي ومن الممكن أن تفسر كيف تكتسب الجسيمات الأولية خصائص مثل الكتلة. توكيد وجود بوزون هيغز (أو عدمه) سيكون خطوة هامة على طريق البحث عن نظرية التوحيد الكبرى يُقصد منها توحيد ثلاث من القوى الأساسية الأربعة المعروفة وهي الكهرومغناطيسية والنووية القوية والنووية الضعيفة تاركة الجاذبية فقط خارجها، كما قد يعين بوزون هگز على تفسير لماذا يكون الجذب ضعيفا مقارنة بالقوى الأساسية الأحرى. إلى جوار بوزون هگز يمكن أن تنتج جسيمات نظرية أخرى من المخطط البحث عنها، منها الغريبات والثقوب السوداء الصغروية والأقطاب المغناطيسية الأحادية والجسيمات فائقة التناظر.
أثيرت مخاوف حول أمان المصادم من حيث أن تصادمات الجسيمات عالية الطاقة قد تنجم عنها كوارث، منها إنتاج ثقوب سوداء صغروية ثابتة وغريبات، ونتيجة لهذا نشرت عدة تقارير لحساب CERN تلتها أوراق بحثية تؤكد على أمان تجارب مصادمة الجسيمات. إلا أن إحدى الأوراق البحثية نشرت يوم 10 أغسطس 2008 تصل إلى نتيجة معاكسة مفادها أن "في حدود المعرفة العالية يوجد خطر غير محدد من إنتاج ثقوب سوداء صغروية ثابتة في المصادمات"، وتقترح الورقة خطوات يمكن أن تساعد على تقليل الخطر
التصميم التقني
يعتبر هذا المصادم هو الأضخم والأعلى طاقة مصادم لتسريع الجسيمات في العالم. ويتكون من نفق دائري مطوق بمسافة 27 كم (17 ميل) على عمق ما بين 50 إلى 175 متر تحت سطح الأرض[28]، وقطر النفق الذي توجد به مغناطيسات تعجيل البروتونات 3.8 امتار، والنفق مغلف بالخرسانة الاسمنتية، تم انشاؤه ما بين 1983 و 1988[29].
وقد كان يستخدم سابقا كمخزن لمصادم الكترون-بوزيترون العملاق, ويعبر النفق الحدود السويسرية الفرنسية عند أربعة أماكن وإن كان معظمها داخل فرنسا. وتحتوي المباني السطحية على المعدات المكملة مثل الضواغط، ومعدات التهوية، ومراقبة الإلكترونات ومصانع التبريد. يحتوي نفق المصادم على حزمة من أنبوبين متجاورين يبلغ قطر كل منهما نحو 2.5 سنتيمتر، كل منهما يحتوي على حزمة بروتونات والبروتون هو أحد أنواع الهدرونات)، أي الجسيمات الأثقل من الإلكترون.
وتُعجل الحزمتان في إتجاهين متضادين خلال النفق، ويوجد عدد 1.232 من المغناطيسات ثنائية الأقطاب (dipole magnet) والتي تحصر الحزمة في المسار الدائري الصحيح داخل كل انبوب.
بينما أضيف لها 392 مغناطيس رباعي الأقطاب (Quadrupole magnets) للإبقاء على تركيز الحزمة [الفيض)، وبغرض رفع فرص التفاعل (الاصتدام) بين البروتونات السريعة في 4 نقاط للتفاعل، حيث يُوجـّه فيضي البروتونات للاصتدام ببعضهما البعض.
وبالإجمالي تم تركيب أكثر من 1600 مغناطيس شديد التوصيل بوزن يزن الواحد منها نحو 27 طن.
هناك حاجة لحوالي 96 طنا من الهيليوم السائل للإبقاء على درجة حرارة تشغيل المغناطيس (1.9 كلفن) جاعلا من المصادم أكبر وحدة تبريد فائق في العالم بما تحتوي عليه من سائل الهيليوم المبرد [30].
تسرع البروتونات مرة أو مرتان يوميا من 450 جيجا الكترون فولت إلى 7 تيرا إلكترون فولت، ويزداد مجال التوصيل الضخم للمغناطيس الثنائي من 0.54 T إلى 8.3 T.
سترفع طاقة كل بروتون بعد ذلك إلى 7 TeV (تيرا إلكترون فولت)، أي أن تصادم كل بروتونين سيعطى طاقة إجمالية قدرها 14 TeVتيرا إلكترون فولت. عند هذه الطاقة سيكون للبروتونات معامل لورنتز يقدر بـ 7,500 وتتحرك بسرعة 99.9999991% من سرعة الضوء.[31] هذا يعني أنها تستغرق أقل من 90 ميكروثانية (μs) لإجراء لفة واحدة كاملة في الحلقة الرئيسية. أي أنها يمكن أن تقطع 11,000 دورة في الثانية الواحدة. بدلا من إرسالها بحزم متواصلة، سوف ترسل على دفعات حزمية عددها 2,808 دفعة، للسماح بحدوث التفاعلات بين الفيضين على مراحل متقطعة، لا يقل الزمن بينها عن 25 نانوثانية(ns)، أي 0.000000025 من الثانية. مع ذلك تم تشغيله بدفعات أقل عند بدء تسليمه، بإعطائه مهلة75 ns.
التكلفة
وفقا لإحصائيات يناير 2010 تقدر التكلفة الاجمالية للمشروع 6 مليار يورو (9 مليار دولار أميريكي) تقريبا كما أن سيرن صرحت بأن تكاليف الصيانة قد تصل إلى 16.6 مليون يورو. تمت الموافقة على البناء في 1995 بميزانية 1.6 مليار يورو بلإضافة إلى 140 مليون يورو لتغطية تكلفة التجارب. ومع ذلك ففى عام 2001 تمت مراجعة التكلفة فتبين انها تخطت ما هو مقدر لها بحوالى 300 مليون يورو للمعجل أو المسرع و 30 مليون يورو للتجارب ومع انخفاض ميزانية الوكالة تم تأجيل موعد الانتهاء من سنة 2005 إلى سنة 2007.
تم انفاق 120 مليون يورو من الميزانية المضافة على المغناطيس عالى التوصيل . كما كان هناك العديد من المصاعب الهندسية حدثت أثناء إنشاء كهف تحت الأرض للولب مركب للميون Compact Muon Solenoid.وكان هناك مصاعب أخرى بسبب تقديم اجزاء أو معدات بها خلل للوكالة من خلال بعض معامل الابحاث المشاركة مثل معمل أرجون الوطني الأمريكي و معجل فيرميلاب.
يشار إلى هذا المعجل بالأحرف الأولى من اسمه بالإنجليزية LHC وحاليا هو أكبر مُعجِّل جسيمات في العالم يستخدم في مصادمة أشعة بروتونية طاقتها 7 تيرا (7×1210) إلكترون فولت. في جوهره هو أداة علمية تجريبية الهدف منها اختبار صحة فرضيات وحدود النموذج الفيزيائي القياسي الذي يصف الإطار النظري الحالي لفيزياء الجسيمات.
يعد مصادم الهدرونات الكبير أكبر معجلات الجسيمات في العالم حاليا وأعلاها طاقةً[23]، وقد بدأت فكرته في أوائل الثمانينيات وتلقى الموافقة الأولى من مجلس CERN في ديسمبر 1994 وبدأت أعمال الإنشاءات المدنية في أبريل 1998.
بعد تمام التركيبات في المصادم وتبريده إلى درجة حرارته التشغيلية النهائية وهي تقريبا 1.9 ك (-271.25 مئوية)، وبعد أن أجري حقن مبدئي لحزم جسيمات فيما بين 8 و 11 أغسطس 2008[24][25]، جرت المحاولة الأولى لتدوير شعاع في المصادم بأكمله يوم 10 سبتمبر 2008[26] في الساعة 7:30 بتوقيت جرينتش. والمصادمة الأولى عالية الطاقة وكان من المخطط أن تحدث بعد افتتاح المصادم رسميا في 21 أكتوبر 2008 [27] إلا أنه أقر تأجيلها لنهاية نوفمبر من نفس العام لأسباب تقنية ومع ذلك تأخرت العملية أكثر حتى نوفمبر 2009.
عند تشغيله وبدء التجارب العملية من المنتظر أن ينتج المصادم الجسيم الغير معروف بوزون هيغز والذي ستؤدي مشاهداته إلى تأكيد تنبؤات النموذج القياسي ومن الممكن أن تفسر كيف تكتسب الجسيمات الأولية خصائص مثل الكتلة. توكيد وجود بوزون هيغز (أو عدمه) سيكون خطوة هامة على طريق البحث عن نظرية التوحيد الكبرى يُقصد منها توحيد ثلاث من القوى الأساسية الأربعة المعروفة وهي الكهرومغناطيسية والنووية القوية والنووية الضعيفة تاركة الجاذبية فقط خارجها، كما قد يعين بوزون هگز على تفسير لماذا يكون الجذب ضعيفا مقارنة بالقوى الأساسية الأحرى. إلى جوار بوزون هگز يمكن أن تنتج جسيمات نظرية أخرى من المخطط البحث عنها، منها الغريبات والثقوب السوداء الصغروية والأقطاب المغناطيسية الأحادية والجسيمات فائقة التناظر.
أثيرت مخاوف حول أمان المصادم من حيث أن تصادمات الجسيمات عالية الطاقة قد تنجم عنها كوارث، منها إنتاج ثقوب سوداء صغروية ثابتة وغريبات، ونتيجة لهذا نشرت عدة تقارير لحساب CERN تلتها أوراق بحثية تؤكد على أمان تجارب مصادمة الجسيمات. إلا أن إحدى الأوراق البحثية نشرت يوم 10 أغسطس 2008 تصل إلى نتيجة معاكسة مفادها أن "في حدود المعرفة العالية يوجد خطر غير محدد من إنتاج ثقوب سوداء صغروية ثابتة في المصادمات"، وتقترح الورقة خطوات يمكن أن تساعد على تقليل الخطر
التصميم التقني
يعتبر هذا المصادم هو الأضخم والأعلى طاقة مصادم لتسريع الجسيمات في العالم. ويتكون من نفق دائري مطوق بمسافة 27 كم (17 ميل) على عمق ما بين 50 إلى 175 متر تحت سطح الأرض[28]، وقطر النفق الذي توجد به مغناطيسات تعجيل البروتونات 3.8 امتار، والنفق مغلف بالخرسانة الاسمنتية، تم انشاؤه ما بين 1983 و 1988[29].
وقد كان يستخدم سابقا كمخزن لمصادم الكترون-بوزيترون العملاق, ويعبر النفق الحدود السويسرية الفرنسية عند أربعة أماكن وإن كان معظمها داخل فرنسا. وتحتوي المباني السطحية على المعدات المكملة مثل الضواغط، ومعدات التهوية، ومراقبة الإلكترونات ومصانع التبريد. يحتوي نفق المصادم على حزمة من أنبوبين متجاورين يبلغ قطر كل منهما نحو 2.5 سنتيمتر، كل منهما يحتوي على حزمة بروتونات والبروتون هو أحد أنواع الهدرونات)، أي الجسيمات الأثقل من الإلكترون.
وتُعجل الحزمتان في إتجاهين متضادين خلال النفق، ويوجد عدد 1.232 من المغناطيسات ثنائية الأقطاب (dipole magnet) والتي تحصر الحزمة في المسار الدائري الصحيح داخل كل انبوب.
بينما أضيف لها 392 مغناطيس رباعي الأقطاب (Quadrupole magnets) للإبقاء على تركيز الحزمة [الفيض)، وبغرض رفع فرص التفاعل (الاصتدام) بين البروتونات السريعة في 4 نقاط للتفاعل، حيث يُوجـّه فيضي البروتونات للاصتدام ببعضهما البعض.
وبالإجمالي تم تركيب أكثر من 1600 مغناطيس شديد التوصيل بوزن يزن الواحد منها نحو 27 طن.
هناك حاجة لحوالي 96 طنا من الهيليوم السائل للإبقاء على درجة حرارة تشغيل المغناطيس (1.9 كلفن) جاعلا من المصادم أكبر وحدة تبريد فائق في العالم بما تحتوي عليه من سائل الهيليوم المبرد [30].
تسرع البروتونات مرة أو مرتان يوميا من 450 جيجا الكترون فولت إلى 7 تيرا إلكترون فولت، ويزداد مجال التوصيل الضخم للمغناطيس الثنائي من 0.54 T إلى 8.3 T.
سترفع طاقة كل بروتون بعد ذلك إلى 7 TeV (تيرا إلكترون فولت)، أي أن تصادم كل بروتونين سيعطى طاقة إجمالية قدرها 14 TeVتيرا إلكترون فولت. عند هذه الطاقة سيكون للبروتونات معامل لورنتز يقدر بـ 7,500 وتتحرك بسرعة 99.9999991% من سرعة الضوء.[31] هذا يعني أنها تستغرق أقل من 90 ميكروثانية (μs) لإجراء لفة واحدة كاملة في الحلقة الرئيسية. أي أنها يمكن أن تقطع 11,000 دورة في الثانية الواحدة. بدلا من إرسالها بحزم متواصلة، سوف ترسل على دفعات حزمية عددها 2,808 دفعة، للسماح بحدوث التفاعلات بين الفيضين على مراحل متقطعة، لا يقل الزمن بينها عن 25 نانوثانية(ns)، أي 0.000000025 من الثانية. مع ذلك تم تشغيله بدفعات أقل عند بدء تسليمه، بإعطائه مهلة75 ns.
التكلفة
وفقا لإحصائيات يناير 2010 تقدر التكلفة الاجمالية للمشروع 6 مليار يورو (9 مليار دولار أميريكي) تقريبا كما أن سيرن صرحت بأن تكاليف الصيانة قد تصل إلى 16.6 مليون يورو. تمت الموافقة على البناء في 1995 بميزانية 1.6 مليار يورو بلإضافة إلى 140 مليون يورو لتغطية تكلفة التجارب. ومع ذلك ففى عام 2001 تمت مراجعة التكلفة فتبين انها تخطت ما هو مقدر لها بحوالى 300 مليون يورو للمعجل أو المسرع و 30 مليون يورو للتجارب ومع انخفاض ميزانية الوكالة تم تأجيل موعد الانتهاء من سنة 2005 إلى سنة 2007.
تم انفاق 120 مليون يورو من الميزانية المضافة على المغناطيس عالى التوصيل . كما كان هناك العديد من المصاعب الهندسية حدثت أثناء إنشاء كهف تحت الأرض للولب مركب للميون Compact Muon Solenoid.وكان هناك مصاعب أخرى بسبب تقديم اجزاء أو معدات بها خلل للوكالة من خلال بعض معامل الابحاث المشاركة مثل معمل أرجون الوطني الأمريكي و معجل فيرميلاب.
لنتائج الأولية للتجربة
في 20 نوفمبر 2009 أمكن تسريع حزمة من البروتونات مرة أخرى بنجاح. تم تسجيل أول تصادمات بروتون-بروتون بطاقة بلغت 450 GeV للجسيم الواحد في 23 نوفمبر 2009.
في 18 ديسمبر 2009 تم إيقاف المصادم بعد الفحص الأولي الذي نتج عنه طاقات تصادمات بروتونية وصلت 2.36 TeV، بدفعات مضاعفة من البروتونات الدائرة لساعات وبيانات من أكثر من مليون تصادم بروتون-بروتون.
في فبراير 2010 تمت إعادة تشغيل المصادم الكبير بعد بعض عمليات التحسين له للوصول به إلى 3.5 TeV خلال فترة التشغيل للعام 2010. سيظل المصادم عاملا على هذا المنوال وبنصف طاقته الإجمالية لقرابة 18 شهر إلى سنتين ومن ثم سيتم إيقافه ثانية لإجراء صيانة شاملة قد تبلغ كلفتها 16 مليون يورو وبعدها ستتم إعادة تشغيله بطاقة التصادمات الإجمالية 15 TeVأي في 2013.[32]
في 30 مارس 2010 تمت بنجاح أول خطة للتصادمات بين حزمتين طاقة كل منهما 3.5 تيرا إلكترون فولت، وبالتالي دخولها رقما قياسيا جديداً لأعلى طاقة تصادمات للجسيمات من صنع البشر.[33]
انتهت أول جولة للبروتونات في الرابع من نوفمبر، 2010، وبدأت جولة جديدة من أيونات الرصاص في 8 نوفمبر 2010، وستستمر حتى أوائل ديسمبر 2010.[34] سيسمح هذا لتجربة أليس بدراسة المادة عن كثب تحت ظروف مشابهة إلى حد كبير لتلك التي حدثت بعد الانفجار العظيم.[35]
بخلاف ما كان متوقعاً إيقاف المصادم خلال 2011، فقد أكّد الدكتور ميرس أن المصادم سيستمر بعمله حتى نهاية عام 2012 وذلك إثر مستجدات مثيرة حول إمكانية اكتشاف جسيم الرب أو "المادة المسؤولة عن تخليق المواد" وتأكيد وجود بوزونات هيغس خلال سنتين بدلاً من خمسة.[36] الجدير ذكره أن جميع النتائج حتى اليوم لم تسفر عن حقائق مأمولة مثل تخليق ثقوب سوداء صغرية، الأمر الذي كان قد مثل خيبة أمل لنظرية الأوتار والتي تنبأت بإمكان حدوثها عند طاقات تتراوح بين 3.5 و4.5 ترليون إلكترون فولت، ومع ذلك فهذا لا يعني أن النظرية قد فشلت وإنما تحتاج لإعادة دراستها عند مستويات طاقة أعلى طالما أن المصادم في طريقه إلى رفع طاقة التصادمات حتى 7 ترليون إلكترون فولت.[37][38][39]
في أواخر مارس من العام 2011، وبينما يعكف العلماء على دراسة العينات التي حصلوا عليها من خلال التجارب الأولية، لوحظ وجود سلوك جديد لجسيمات غريبة ونادرة بكمية متعادلة من المادة والمادة المضادة، تدعى ميزون ب - B meson، وهذه الجسيمات يعتقد بأنها المسؤولة عن كوننا الحالي وفقاً لفرضية الانفجار العظيم. ما يزيد من احتمالية وجود مثل هذه الجسيمات هو الكم الهائل من الطاقة الذي يتم استخدامه في هذا المصادم مقارنة بالمصادمات الأخرى.[40][41]
حبس المادة المضادة
كانت أخبار قد أكدت في أوائل أبريل، 2011 نتائج مصادم الهدرونات اكتشاف سابقه، تيفاترون التي كان قد لاحظها عام 2008. وجد العلماء أن الكوارك العلوي وهو الكوارك الأثقل بين الكواركات الستة يتصرف على نحو شاذ عند الطاقات العليا (فوق 450 غيغا إلكترون فولت) حيث أن 45% من الكواركات العلوية تعبر مسار حزمة البروتونات بينما المتوقع 9%. إن صحت هذه التأكيدات فإن العلماء بذلك قد اكتشفوا قوة أساسية جديدة إضافة للقوى الأربعة المألوفة مسؤولة عن تآثر الكواركات العلوية وهذا يستدعي إعادة نمذجة النموذج العياري.[42][43] في مايو 2011 تم تأكديد نتائج أبريل مرة أخرى بعد أن كانت هناك شكوك في صحة البيانات حيث استطاع العلماء حبس 309 ذرة من نقيض الهيدروجين لزمن قياسي قدره 1000 ثانية وهو رقم قياسي جديد يفوق الرقم السابق بكثير والذي كان لفترة لا تتجاوز سدس الثانية، وبتصادم 38 ذرة. هذا شجع العلماء على تطوير مكشاف ألفا والتخطيط لتصميم مجس جديد مختص أطلق عليه مكشاف ألفا 2 ليصبح جاهزاً للعمل في 2012 الأمر الذي يسمح للباحثين بتجميع بيانات إضافية قبل إغلاق مصادم الهدرونات (بغرض التطوير أيضاً).[44][45][46]
الموارد الحاسوبية
تم إنشاء شبكة مصادم الهادرون الكبير للحوسبة أو بلانجليزية LHC Computing Grid وذلك للتحكم بالكم الضخم من البيانات التي تنتج من مصادم الهدرونات. وهى تضم خطوط الياف ضوئية محلية بجانب خط إنترنت عالى السرعة لمشاركة البيانات بين الوكالة والمعاهد والمعامل على مستوى العالم.
نظام الحوسبة الموزع أو بلانجليزية Distributed Computing واسمة مصادم الهدرونات الكبير@المنزل أو بلانجليزية LHC@Home تم العمل فية ليدعم بناء وتقويم المصادم وهو يستخدم نظام بوينك لمحاكة كيفية انتقال الجزيئات في القناة وبهذة المعلومات سيتمكن العلماء من ضبط المغناطيس للحصول على أفضل دوران مستقر للاشعة حول الحلقات في المصادم.
مان مصادمة الجزيئات
كانت أثيرت مخاوف حول أمان مخطط التجارب التي ستجرى بواسطة المصادم في وسائل الاعلام والمحاكم[47]. وبالرغم من أن تلك المخاوف لا تعدم أسسا علمية نظرية تستند إليها إلا أن التوافق العام في الآراء في المجتمع العلمي هو أنه لا يوجد اي تصور واضح الخطر الناتج عن اصطدام الجسيمات في مصادم الهدرونات الكبير LHC[48].
يقول بعض الخبراء إلى ان تصادم الجزيئات قد ينتج عنه ثقب أسود قد يلتهم الأرض كلها. في حين يشير البعض إلى إمكانية إنتاج المادة الغريبة strangelet التي يمكن أن تلتهم الأرض أيضا. في حين يذهب بعض الخبراء إلى أن التركيبة أو معاملات الكونية ليست في حالة مستقرة وأن هذا الاختيار قد يعطي إشارة الانتقال نجو حالة أكثر استقرارا (يشبه تأثير الفراشة) ينقلب جزئ كبير من الكون فيه إلى فراغ أو ما يعرف بال voids أو vacuum bubble.
أما مصادر التخوف الأخرى فهي نشوء أقطاب مغناطيسيية أحاديية magnetic monopole تسبب في تلاشي البروتونات، إضافة إلى الإشعاعات الكونية المنبعثة عنها. وقد أسست السيرن CERN أي مركز البحوث النووي الأوروبي صفحة ترد فيها بشكل مقتضب على هذه المخاوف لكن لا تجزم بعدم إمكانية وقوعها. فأما عن الثقوب السوداء فهي تقول أنها يمكن أن تكون لكن عمرها سيكون من القصر بحيث لا تتمكن من امتصاص أية مادة بداخلها مما لا يجعلها اي مصدر للقلق في حين يرد البعض بان إنتاج ثقب أسود مستقر فرضية واردة. [1]
مشاكل تقنية
في 19 سبتمبر 2008 احدث خلل في التبريد انحناء في 100 قطب مغناطيسي في القطاعات 3-4 متسببا في تسرب ما يفارب 6 طن من الهيليوم في القناة وبالتالي ارتفاع في درجة الحرارة حوالي 100 درجة كلفن. هذه الحادثة تسبببت بتأخير عمليات الأصلاح وتأجيل التجربة قرابة العام حيث تم إصلاح الأجهزة التي تعطلت وإعادة تبريد المغانط المتأثرة [49][50]. تم مؤخرا الإعلان عن موعد الانتهاء من الإصلاح وبدأت التجربة فعلا مع نوفمبر 2009.
تمكن بعض قراصنة الكمبيوتر من الولوج إلى أحد حواسيب المركز وترك رسالة سخرية من العلماء ونظام أمنهم الحاسوبي.
توقف المصادم وعودته للعمل في نوفمبر 2009
كان حريق قد شبّ في أحد موصلات الطاقة في الجهاز، في 19 أيلول (سبتمبر) 2008، ما تسبّب بإيقاف تشغيل المُصادم. وتوجّب على العلماء، حينها، انتظار تبريده قبل الشروع بصيانته وإصلاح أعطاله، واستبدال الملفات المحروقة فيه. وتضمّنت تلك العملية إعادة تفحّص عشرة آلاف ناقل للكهرباء من النوع الفائق التوصيل Super Conductor، تساهم في التيار العالي الذي يتدفق في الجهاز، والذي أدى خلل فيه إلى احتراق المُصادِم في العام الماضي.
عاد المصادم بعد توقّفه لأكثر من عام مستهلاً طاقته بنصف الطاقة الإجمالية، وفي حديث إلى وسائل الإعلام، قال رولف هووِر المدير العام لمركز سيرن:
«اخترنا طاقة 3.5 تيرا - إلكترون فولت كبداية لأنها تتيح لمشغلي «مُصادم الهدرونات» أن يُطوّروا خبراتهم في تشغيل الجهاز بأمان، أثناء السلسلة الجديدة من الاختبارات»
تأخيرات البناء
اكتشاف وجود عطل في مسرع الجزيئات.
كانت أثيرت مخاوف حول أمان مخطط التجارب التي ستجرى بواسطة المصادم في وسائل الاعلام والمحاكم[47]. وبالرغم من أن تلك المخاوف لا تعدم أسسا علمية نظرية تستند إليها إلا أن التوافق العام في الآراء في المجتمع العلمي هو أنه لا يوجد اي تصور واضح الخطر الناتج عن اصطدام الجسيمات في مصادم الهدرونات الكبير LHC[48].
يقول بعض الخبراء إلى ان تصادم الجزيئات قد ينتج عنه ثقب أسود قد يلتهم الأرض كلها. في حين يشير البعض إلى إمكانية إنتاج المادة الغريبة strangelet التي يمكن أن تلتهم الأرض أيضا. في حين يذهب بعض الخبراء إلى أن التركيبة أو معاملات الكونية ليست في حالة مستقرة وأن هذا الاختيار قد يعطي إشارة الانتقال نجو حالة أكثر استقرارا (يشبه تأثير الفراشة) ينقلب جزئ كبير من الكون فيه إلى فراغ أو ما يعرف بال voids أو vacuum bubble.
أما مصادر التخوف الأخرى فهي نشوء أقطاب مغناطيسيية أحاديية magnetic monopole تسبب في تلاشي البروتونات، إضافة إلى الإشعاعات الكونية المنبعثة عنها. وقد أسست السيرن CERN أي مركز البحوث النووي الأوروبي صفحة ترد فيها بشكل مقتضب على هذه المخاوف لكن لا تجزم بعدم إمكانية وقوعها. فأما عن الثقوب السوداء فهي تقول أنها يمكن أن تكون لكن عمرها سيكون من القصر بحيث لا تتمكن من امتصاص أية مادة بداخلها مما لا يجعلها اي مصدر للقلق في حين يرد البعض بان إنتاج ثقب أسود مستقر فرضية واردة. [1]
مشاكل تقنية
في 19 سبتمبر 2008 احدث خلل في التبريد انحناء في 100 قطب مغناطيسي في القطاعات 3-4 متسببا في تسرب ما يفارب 6 طن من الهيليوم في القناة وبالتالي ارتفاع في درجة الحرارة حوالي 100 درجة كلفن. هذه الحادثة تسبببت بتأخير عمليات الأصلاح وتأجيل التجربة قرابة العام حيث تم إصلاح الأجهزة التي تعطلت وإعادة تبريد المغانط المتأثرة [49][50]. تم مؤخرا الإعلان عن موعد الانتهاء من الإصلاح وبدأت التجربة فعلا مع نوفمبر 2009.
تمكن بعض قراصنة الكمبيوتر من الولوج إلى أحد حواسيب المركز وترك رسالة سخرية من العلماء ونظام أمنهم الحاسوبي.
توقف المصادم وعودته للعمل في نوفمبر 2009
كان حريق قد شبّ في أحد موصلات الطاقة في الجهاز، في 19 أيلول (سبتمبر) 2008، ما تسبّب بإيقاف تشغيل المُصادم. وتوجّب على العلماء، حينها، انتظار تبريده قبل الشروع بصيانته وإصلاح أعطاله، واستبدال الملفات المحروقة فيه. وتضمّنت تلك العملية إعادة تفحّص عشرة آلاف ناقل للكهرباء من النوع الفائق التوصيل Super Conductor، تساهم في التيار العالي الذي يتدفق في الجهاز، والذي أدى خلل فيه إلى احتراق المُصادِم في العام الماضي.
عاد المصادم بعد توقّفه لأكثر من عام مستهلاً طاقته بنصف الطاقة الإجمالية، وفي حديث إلى وسائل الإعلام، قال رولف هووِر المدير العام لمركز سيرن:
«اخترنا طاقة 3.5 تيرا - إلكترون فولت كبداية لأنها تتيح لمشغلي «مُصادم الهدرونات» أن يُطوّروا خبراتهم في تشغيل الجهاز بأمان، أثناء السلسلة الجديدة من الاختبارات»
تأخيرات البناء
اكتشاف وجود عطل في مسرع الجزيئات.
اكتشاف بوزون هيغز .
يوم الأربعاء 4 يوليو 2012، أعلن العلماء العاملون في المختبر في جنيف، عن اكتشافهم لأحد الجسيمات الدقيقة الموجودة ضمن المكونات الذرية، قالوا: إنه ربما يكون، على الأكثر، الجسيم المعروف باسم «بوزون هيغز»[51]، وقال العلماء في مؤتمر صحافي أنهم اكتشفوا «بوزون هيغز» الذي يلعب دورا حيويا في تشكيل الكون، في مصادم الهاردونات الكبير،. وقال العلماء إن البيانات الحالية تؤكد بدرجة كبيرة أن هناك جسيما موجودا في مجال الطاقة 125.3 جيجا إلكترون فولت - أي أنه أثقل من البروتون الموجود في نواة الذرة بنحو 133 مرة.و أكد العلماء أن نسبة الدقة في أن هذا الجسيم هو «بوزون هيغز» عالية جدا، الأمر الذي يبرر القول بأنه «اكتشاف» حقيقي.
المصدر :
http://ar.wikipedia.org/wiki/%D9%85%D8% ... 9%8A%D8%B1
يوم الأربعاء 4 يوليو 2012، أعلن العلماء العاملون في المختبر في جنيف، عن اكتشافهم لأحد الجسيمات الدقيقة الموجودة ضمن المكونات الذرية، قالوا: إنه ربما يكون، على الأكثر، الجسيم المعروف باسم «بوزون هيغز»[51]، وقال العلماء في مؤتمر صحافي أنهم اكتشفوا «بوزون هيغز» الذي يلعب دورا حيويا في تشكيل الكون، في مصادم الهاردونات الكبير،. وقال العلماء إن البيانات الحالية تؤكد بدرجة كبيرة أن هناك جسيما موجودا في مجال الطاقة 125.3 جيجا إلكترون فولت - أي أنه أثقل من البروتون الموجود في نواة الذرة بنحو 133 مرة.و أكد العلماء أن نسبة الدقة في أن هذا الجسيم هو «بوزون هيغز» عالية جدا، الأمر الذي يبرر القول بأنه «اكتشاف» حقيقي.
المصدر :
http://ar.wikipedia.org/wiki/%D9%85%D8% ... 9%8A%D8%B1
جدول إعادة تشغيل المسرع (سيرن) .
2يونيو/حزيران 2014 ــ إعادة تشغيل مُعزّز مسرع البروتون (PS)
18 يونيو/حزيران 2014 ــ اعادة تشغيل مُسرّع البروتون (PS)
بداية يوليو/تموز ــ إجراء اختبارات كهربائية على المسرع الأكبر للبروتون Super Proton Synchrotron
منتصف يوليو/تموز ــ استئناف برنامج الفيزياء في كل من منشأة مسرع البروتون (PS) و منشأة فصل النظائر المسمى بـ The Isotope Separator On-Line facility
منتصف أغسطس/آب ــ استئناف برنامج الفيزياء حول المادة المضادة في مبطئ البروتون المضاد (AD)
منتصف أكتوبر/ تشرين الأول ــ استئناف برنامج الفيزياء في المسرع الأكبر للبروتون (SPS)
بداية 2015 ــ عودة الحزم الى مصادم الهادرون الكبير (LHC)
ربيع عام 2015 - استئناف برنامج الفيزياء في تجارب المصادم (LHC)
ترجمة: Wael Chafai
مراجعة: Redouan Che
المصدر:
http://www.techno-science.net/?onglet=news&news=12915
2يونيو/حزيران 2014 ــ إعادة تشغيل مُعزّز مسرع البروتون (PS)
18 يونيو/حزيران 2014 ــ اعادة تشغيل مُسرّع البروتون (PS)
بداية يوليو/تموز ــ إجراء اختبارات كهربائية على المسرع الأكبر للبروتون Super Proton Synchrotron
منتصف يوليو/تموز ــ استئناف برنامج الفيزياء في كل من منشأة مسرع البروتون (PS) و منشأة فصل النظائر المسمى بـ The Isotope Separator On-Line facility
منتصف أغسطس/آب ــ استئناف برنامج الفيزياء حول المادة المضادة في مبطئ البروتون المضاد (AD)
منتصف أكتوبر/ تشرين الأول ــ استئناف برنامج الفيزياء في المسرع الأكبر للبروتون (SPS)
بداية 2015 ــ عودة الحزم الى مصادم الهادرون الكبير (LHC)
ربيع عام 2015 - استئناف برنامج الفيزياء في تجارب المصادم (LHC)
ترجمة: Wael Chafai
مراجعة: Redouan Che
المصدر:
http://www.techno-science.net/?onglet=news&news=12915
إسرائيل تعلن انضمامها رسميا للمنظمة الأوروبية للأبحاث النووية "سيرن"
الجمعة 13-12 - 08:30 ص
أ ش أ
أعلنت اسرائيل اليوم (الجمعة) انضمامها رسميا الى المنظمة الاوروبية للابحاث النووية "سيرن" صاحبة اكبر مسرع جزيئات في العالم على الحدود السويسرية الفرنسية.
وذكر راديو "صوت إسرائيل " ان الدول الاوروبية العشرون الاعضاء في المنظمة صوتوا بالاجماع لصالح القرار بضم اسرائيل اليها بعد فترة اختبار استمرت سنتين.
يشار الى ان اسرائيل هي الدولة الوحيدة غير عضو في الاتحاد الاوروبي التي تنضم الى هذه المنظمة ومن التوقع ان يعود القرار الاوروبي بالفائدة العلمية والاقتصادية الكبيرة على اسرائيل نظرا لانه يتيح لشركات اسرائيلية فرصة التنافس في عطاءات المنظمة الاوروبية.
ومن جانبه ، رحب نائب وزير الخارجية الاسرائيلى زئيف الكين بالقرار الاوروبي، قائلا "انه يدل على انه يمكن دفع مشاريع علمية مع الاتحاد الاوروبي بدون اقحام اعتبارات سياسية فيها".
وستقام المراسم الرسمية بضم اسرائيل رسميا الى المنظمة بعد عدة اسابيع في جنيف.
المصدر :
http://www.albawabhnews.com/264306
الجمعة 13-12 - 08:30 ص
أ ش أ
أعلنت اسرائيل اليوم (الجمعة) انضمامها رسميا الى المنظمة الاوروبية للابحاث النووية "سيرن" صاحبة اكبر مسرع جزيئات في العالم على الحدود السويسرية الفرنسية.
وذكر راديو "صوت إسرائيل " ان الدول الاوروبية العشرون الاعضاء في المنظمة صوتوا بالاجماع لصالح القرار بضم اسرائيل اليها بعد فترة اختبار استمرت سنتين.
يشار الى ان اسرائيل هي الدولة الوحيدة غير عضو في الاتحاد الاوروبي التي تنضم الى هذه المنظمة ومن التوقع ان يعود القرار الاوروبي بالفائدة العلمية والاقتصادية الكبيرة على اسرائيل نظرا لانه يتيح لشركات اسرائيلية فرصة التنافس في عطاءات المنظمة الاوروبية.
ومن جانبه ، رحب نائب وزير الخارجية الاسرائيلى زئيف الكين بالقرار الاوروبي، قائلا "انه يدل على انه يمكن دفع مشاريع علمية مع الاتحاد الاوروبي بدون اقحام اعتبارات سياسية فيها".
وستقام المراسم الرسمية بضم اسرائيل رسميا الى المنظمة بعد عدة اسابيع في جنيف.
المصدر :
http://www.albawabhnews.com/264306
المنافسة تشتد بين العلماء للعثور على "الذرة الالهية"
آخر تحديث: الثلاثاء، 17 مايو/ أيار، 2011، 21:05 GMT
نفى علماء يعملون في مشروع صادم الهادرون الكبير، القريب من جنيف بسويسرا، الانباء التي تحدثت عن ان الباحثين في هذا المشروع نجحوا في ملاحظة اول الاشارات الدالة على وجود جزيء اصغر من الذرة، يعرف باسم "هيغز بوسون".
يشار الى ان هذا الجزيء الفائق الصغر، الذي يطلق عليه احيانا "الذرة الالهية"، يستخدم في اوساط علماء الفيزياء لتفسير تكوين باقي الجزيئات كتلة المادة الخاصة بها، الا ان وجوده ما زال غير مؤكد او مبرهن عليه علميا.
وكانت مذكرة داخلية، سربت الشهر الماضي، قد ذكرت شيئا عن التقاط العلماء لاشارات بهذا الخصوص من خلال التجارب، لكن العلماء القريبين من هذه التجارب في هذا المشروع الفريد من نوعه قالوا ان المعطيات المتوفرة لا تؤكد هذه الحقيقة.
الا ان العلماء قالوا انهم يعتقدون انه بنهاية العام المقبل سيكون بالامكان تحديد وجود او عدم وجود "الذرة الالهية"، وهو الجزيء الذي يبحث عنه العلماء منذ عقود بدون نجاح.
الاجابة قريبة
ويقول الدكتور رولف ديتر هوير رئيس الهيئة الاوروبية للبحوث النووية (سيرن)، في كلمة امام مؤتمر علمي عقد الثلاثاء في لندن، ان العلماء سيصلون الى اجابة حاسمة حول وجود او عدم وجود هذا الجزيء، الاصغر من الذرة.
وكانت هيئة سيرن قد طلبت من العلماء في مشروع الصادم الكبير الاسراع في الحصول على اجابة دامغة حول وجود هذا الجزيئ، الذي يعد من اكثر اسرار الفيزياء غموضا وتعقيدا.
وقد سمي الجزيء بـ "هيغز بوسون" تيمنا بالعالم البريطاني بيتر هيغز، الذي كان اول من روج لفكرة وجوده في عام 1964.
وفي حال عثر العلماء على "الذرة الالهية" سيكون بالامكان وضع نظرية الجزيئات، والذرات وقوتها في الكون تحت مفهوم تفسيري وتحليلي موحد، ما يحل جانبا كبيرا من التعقيدات المجهولة في علوم الفيزياء الذرية حيرت العلماء لفترات طويلة.
وبموجب نظرة "الانفجار الكبير" او الـ "بيغ بانغ" يفترض ان يكون هذا الجزيء قد انشطر بعد ان وصلت درجة حرارته الى ما يقرب من 100 ألف مرة اكثر من حرارة الشمس، وهو ما هيأ الظروف لهذا الانفجار، الذي حدث في اجزاء من الثانية، ليخلق بعدها الكون الذي نعرفه قبل نحو 13,7 مليار سنة.
وتتنافس اوروبا والولايات المتحدة من اجل الفوز بهذه المعرفة قبل غيرها، ويشتد السباق حاليا وزادت حرارته بين القارتين.
المصدر :
http://www.bbc.co.uk/arabic/scienceandt ... bang.shtml
آخر تحديث: الثلاثاء، 17 مايو/ أيار، 2011، 21:05 GMT
نفى علماء يعملون في مشروع صادم الهادرون الكبير، القريب من جنيف بسويسرا، الانباء التي تحدثت عن ان الباحثين في هذا المشروع نجحوا في ملاحظة اول الاشارات الدالة على وجود جزيء اصغر من الذرة، يعرف باسم "هيغز بوسون".
يشار الى ان هذا الجزيء الفائق الصغر، الذي يطلق عليه احيانا "الذرة الالهية"، يستخدم في اوساط علماء الفيزياء لتفسير تكوين باقي الجزيئات كتلة المادة الخاصة بها، الا ان وجوده ما زال غير مؤكد او مبرهن عليه علميا.
وكانت مذكرة داخلية، سربت الشهر الماضي، قد ذكرت شيئا عن التقاط العلماء لاشارات بهذا الخصوص من خلال التجارب، لكن العلماء القريبين من هذه التجارب في هذا المشروع الفريد من نوعه قالوا ان المعطيات المتوفرة لا تؤكد هذه الحقيقة.
الا ان العلماء قالوا انهم يعتقدون انه بنهاية العام المقبل سيكون بالامكان تحديد وجود او عدم وجود "الذرة الالهية"، وهو الجزيء الذي يبحث عنه العلماء منذ عقود بدون نجاح.
الاجابة قريبة
ويقول الدكتور رولف ديتر هوير رئيس الهيئة الاوروبية للبحوث النووية (سيرن)، في كلمة امام مؤتمر علمي عقد الثلاثاء في لندن، ان العلماء سيصلون الى اجابة حاسمة حول وجود او عدم وجود هذا الجزيء، الاصغر من الذرة.
وكانت هيئة سيرن قد طلبت من العلماء في مشروع الصادم الكبير الاسراع في الحصول على اجابة دامغة حول وجود هذا الجزيئ، الذي يعد من اكثر اسرار الفيزياء غموضا وتعقيدا.
وقد سمي الجزيء بـ "هيغز بوسون" تيمنا بالعالم البريطاني بيتر هيغز، الذي كان اول من روج لفكرة وجوده في عام 1964.
وفي حال عثر العلماء على "الذرة الالهية" سيكون بالامكان وضع نظرية الجزيئات، والذرات وقوتها في الكون تحت مفهوم تفسيري وتحليلي موحد، ما يحل جانبا كبيرا من التعقيدات المجهولة في علوم الفيزياء الذرية حيرت العلماء لفترات طويلة.
وبموجب نظرة "الانفجار الكبير" او الـ "بيغ بانغ" يفترض ان يكون هذا الجزيء قد انشطر بعد ان وصلت درجة حرارته الى ما يقرب من 100 ألف مرة اكثر من حرارة الشمس، وهو ما هيأ الظروف لهذا الانفجار، الذي حدث في اجزاء من الثانية، ليخلق بعدها الكون الذي نعرفه قبل نحو 13,7 مليار سنة.
وتتنافس اوروبا والولايات المتحدة من اجل الفوز بهذه المعرفة قبل غيرها، ويشتد السباق حاليا وزادت حرارته بين القارتين.
المصدر :
http://www.bbc.co.uk/arabic/scienceandt ... bang.shtml
الأحد 7 سبتمبر GMT 21:00 2014
آخر تحديث : الجمعة 12 سبتمبر GMT 20:19 2014
ستيف هوكينغ: جسيم الرب قد يتسبب بتدمير الكون بأسره
أشرف أبو جلالة
كشف عالم الفيزياء ستيفن هوكينغ في كتابه الجديد عن امتلاك "جسيم الرب" القدرة التي تحوّله إلى خطر محدق، خاصة إذا زادت مستويات الطاقة الخاصة به، وهو ما يعني أن الكون قد يتعرض لاضمحلال كارثي في الفراغ، مع توسع فقاعة الفراغ الحقيقي بنفس سرعة الضوء.
أشرف أبوجلالة من القاهرة: حذر عالم الفيزياء البارز، ستيفن هوكينغ، من أن بوزون هيغز أو "جسيم الرب" المراوغ، الذي اكتشفه العلماء في العام 2012، يمتلك القدرة على تدمير الكون بأسره.
وقال هوكينغ، وهو أستاذ رياضيات سابق بجامعة كامبريدج، إنه حين يقف الجسيم عند مستويات طاقة عالية للغاية، فإنه قد يتسبب في انهيار المكان والزمان بشكل مفاجئ.
وأشار هوكينغ إلى أن ذلك الجسيم، الذي يمنح كل شيء موجود شكله وحجمه، قد يتسبب في حدوث "تأخير فراغ كارثي"، إذا ما قام العلماء بوضعه تحت تأثير ضغط شديد.
ورغم أن فرص حدوث كارثة كهذه غير واردة في الوقت الراهن نظراً لعدم امتلاك علماء الفيزياء مُسرِّع جزيئات ضخماً، بما فيه الكفاية، للقيام بمثل هذه التجربة، إلا أن التصريحات التي أدلى بها البروفيسور هوكينغ بهذا الخصوص قد استفزت العلماء.
وأوضح هوكينغ وفقاً لما نشره في كتاب جديد باسم Starmus:" يمتلك جسيم الرب القدرة التي من شأنها تحويله إلى شيء كارثي، إذا زادت مستويات الطاقة الخاصة به عن 100 مليار غيغا إلكترون فولت، وهو ما يعني أن الكون قد يتعرض لاضمحلال كارثي في الفراغ، مع توسع فقاعة الفراغ الحقيقي بنفس سرعة الضوء.
وهو ما قد يحدث في أي وقت، والخطر هو أننا لن نتمكن من مشاهدته وهو آتٍ".
ورغم استبعاد هوكينغ إمكانية وقوع تلك الكارثة في المستقبل القريب، إلا أنه أوضح أن مُسرِّع الجزيئات الذي يمكنه انتاج طاقة قدرها 100 مليار غيغا إلكترون فولت سيكون أكبر من كوكب الأرض، وأن الظروف الاقتصادية الحالية لن تسمح بتمويله.
المصدر :
http://www.elaph.com/Web/News/2014/9/938607.html
آخر تحديث : الجمعة 12 سبتمبر GMT 20:19 2014
ستيف هوكينغ: جسيم الرب قد يتسبب بتدمير الكون بأسره
أشرف أبو جلالة
كشف عالم الفيزياء ستيفن هوكينغ في كتابه الجديد عن امتلاك "جسيم الرب" القدرة التي تحوّله إلى خطر محدق، خاصة إذا زادت مستويات الطاقة الخاصة به، وهو ما يعني أن الكون قد يتعرض لاضمحلال كارثي في الفراغ، مع توسع فقاعة الفراغ الحقيقي بنفس سرعة الضوء.
أشرف أبوجلالة من القاهرة: حذر عالم الفيزياء البارز، ستيفن هوكينغ، من أن بوزون هيغز أو "جسيم الرب" المراوغ، الذي اكتشفه العلماء في العام 2012، يمتلك القدرة على تدمير الكون بأسره.
وقال هوكينغ، وهو أستاذ رياضيات سابق بجامعة كامبريدج، إنه حين يقف الجسيم عند مستويات طاقة عالية للغاية، فإنه قد يتسبب في انهيار المكان والزمان بشكل مفاجئ.
وأشار هوكينغ إلى أن ذلك الجسيم، الذي يمنح كل شيء موجود شكله وحجمه، قد يتسبب في حدوث "تأخير فراغ كارثي"، إذا ما قام العلماء بوضعه تحت تأثير ضغط شديد.
ورغم أن فرص حدوث كارثة كهذه غير واردة في الوقت الراهن نظراً لعدم امتلاك علماء الفيزياء مُسرِّع جزيئات ضخماً، بما فيه الكفاية، للقيام بمثل هذه التجربة، إلا أن التصريحات التي أدلى بها البروفيسور هوكينغ بهذا الخصوص قد استفزت العلماء.
وأوضح هوكينغ وفقاً لما نشره في كتاب جديد باسم Starmus:" يمتلك جسيم الرب القدرة التي من شأنها تحويله إلى شيء كارثي، إذا زادت مستويات الطاقة الخاصة به عن 100 مليار غيغا إلكترون فولت، وهو ما يعني أن الكون قد يتعرض لاضمحلال كارثي في الفراغ، مع توسع فقاعة الفراغ الحقيقي بنفس سرعة الضوء.
وهو ما قد يحدث في أي وقت، والخطر هو أننا لن نتمكن من مشاهدته وهو آتٍ".
ورغم استبعاد هوكينغ إمكانية وقوع تلك الكارثة في المستقبل القريب، إلا أنه أوضح أن مُسرِّع الجزيئات الذي يمكنه انتاج طاقة قدرها 100 مليار غيغا إلكترون فولت سيكون أكبر من كوكب الأرض، وأن الظروف الاقتصادية الحالية لن تسمح بتمويله.
المصدر :
http://www.elaph.com/Web/News/2014/9/938607.html
بعد هذا العرض أقول وبالله التوفيق :
يا ترى عن أي شيء يبحثون ؟
أو عن أي طاقة ؟
أو عن أي عوالم يريدون أن يصلوا إليها ؟
وما هي حقيقة وماهية ما يسمونه بـ (جسيم الرب) الذي يبحثون عنه بهذه الدرجة والكيفية ؟
أو هذا كله مجرد أداة ووسيلة لتدمير العالم وفق أحد سيناريوهات الخراب الدجالية ؟
يا ترى عن أي شيء يبحثون ؟
أو عن أي طاقة ؟
أو عن أي عوالم يريدون أن يصلوا إليها ؟
وما هي حقيقة وماهية ما يسمونه بـ (جسيم الرب) الذي يبحثون عنه بهذه الدرجة والكيفية ؟
أو هذا كله مجرد أداة ووسيلة لتدمير العالم وفق أحد سيناريوهات الخراب الدجالية ؟
ليست هناك تعليقات:
إرسال تعليق